ÓLEOS E GORDURAS

- 1- Introdução
- 2 Produção e comércio mundiais de óleos e gorduras
- 3- Caracterização geral de diferentes óleos vegetais
- 4 Lípidos
- 4.1 Definição
- 4.2 Classificação
- 4.3 Caracterização de alguns grupos lipídicos
- 4.3 Caracterização de alguns óleos e gorduras alimentares
- 5 Processamento e alteração dos lípidos. Exemplos

colza

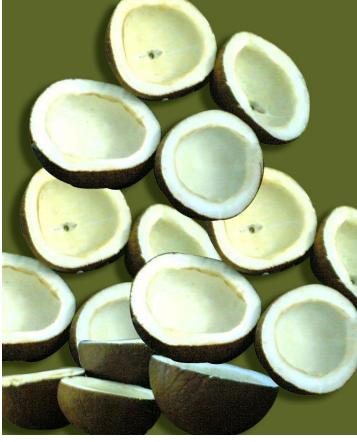
girassol

http://www.esab.ipbeja.pt/

azeitona

cardo

purgueira



rícino

algodão

Palma e coconote

http://www.unicarepharma.com

copra

http://www.bighams.com/dynamic/image library/cropped/TB_Beans_408pixels.jpg

soja

linho

//www.uni-graz.at/~katzer/engl/Sesa_ind.html

6) (0	VEGETAIS	
0 4003	000011113	

PRODUTO	% OLEO	UTILIZAÇÃO PRIMAIPAIS
SENENTES		
OLEAGINDIAN :		
RÍCINO	35-55	- PINTURAS ; LUBRIFICANTES ; REDICING
ALGODAD	15-25	. o'LEO CONESTIVEL; SABÃO
Linkto	35-44	- PINTURAS, VERNIZES
COLEA/MOSTALDA	70-45	. éles continiver
GERGELIN	35-50	. SLED COMESTIVEL
GIRASSOL	25-40	- SLED CARGETTIVEL ; SADAD

FRUTOS	Lo M		
"CASCA" :		38	- 50
AMENDO	im	. 46	- 57
PALMISTE	= cocomot	E	
6000	(alturion	ELCA) fuesca)	

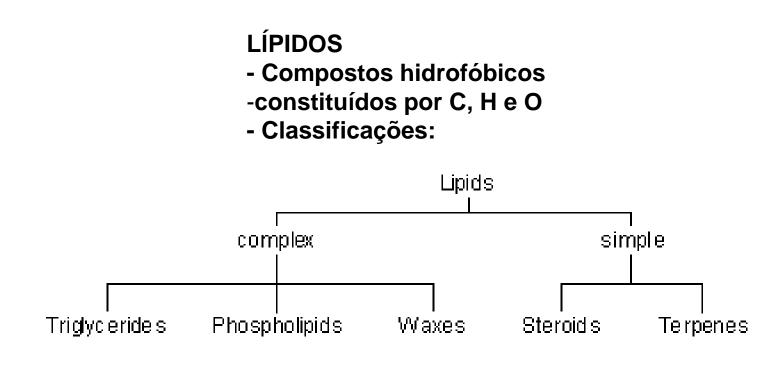
. GLED LONESTIVEL ; SABAD

- GLED CONESTIVEL; SABAD; CHEME CONFORM | CAPICAN - GLED CONESTIVEL; SABAD; CHEME

CORPORAL | CAPILAR

MESOCARIO

PALTEILA DO RENDER 56 - 6LED SMESTINE, SABAD (ho he fince)


of So o bled RE NIGINO FABRICADO POR UMA TÉCNICA LORIS-TICARA PODE SER MILITARO PARA RINS MEDICINIAIS

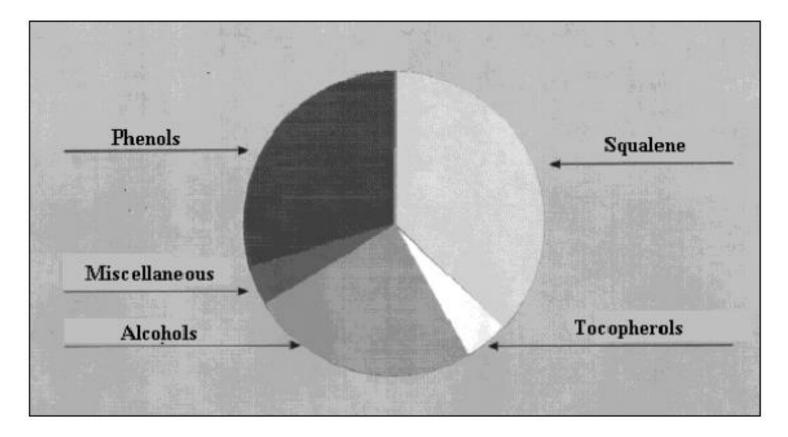
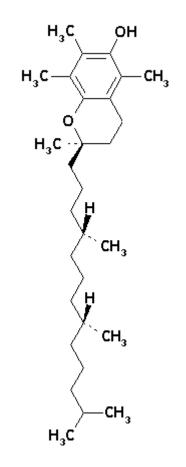
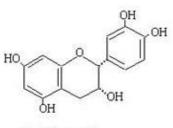
Retirado de: UNIFEM - Extraction des huiles, New York, 1989.

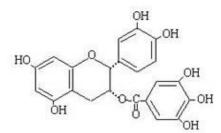
	Moisture content	Oil/fat content	Yield of oil	Uses for by-products
	(%)	(%)	(%)	
Seeds and beans				
Cotton	5	15-25	-	Animalfeed
Rape	9	40-45	25	Animal feed (needs
Mustard	7	25-45	-	detoxifying)
Sesame	5	25-50	45	-
Sunflower	5	25-50	20-30*	Animalfeed
				Hulls used for chicken litter,
Safflower	5	30	-	presscake for animal feed
				Animalfeed
Nuts				
Coconut (fresh)	40-50	35-40	55-62	See Figure 8
Copra	3 – 4.5	64-70	-	-
Groundnut (shelled)	4	28-55	40*	Food, snacks, soup
Palm kernel nuts	-	-	45-49	Animalfeed
(shelled)	-	46-57	47-51	Animal feed, fuel (shells)
Shea nut	-	34-44	15-4.5*	Fuel
Shea nut	-	-	60	
Fruits				
Oil palm	-	56	11-20	Fuel, lighting
Avocado	69	11-28	40-44	-
Olive	50-70	-	25	Animal feed, fuel

Table 1: Sources of oil. *Traditional methods

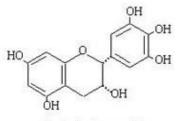
http://www.itdg.org/docs/technical_information_service/oil_extraction.pdf

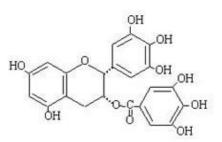
LiPiDos:	
SAPONIFICAJEL	GLICÉRIDOS (tri-, di-, mono-)
INSAPONITICAUEL	ÁC. GORDOS LIVRES ALCOÓIS DE ELEVADO P.T. HIDROCARBONETOS VITATINAS D.E.K B-CAROTENO (pró-vitaning A) de.

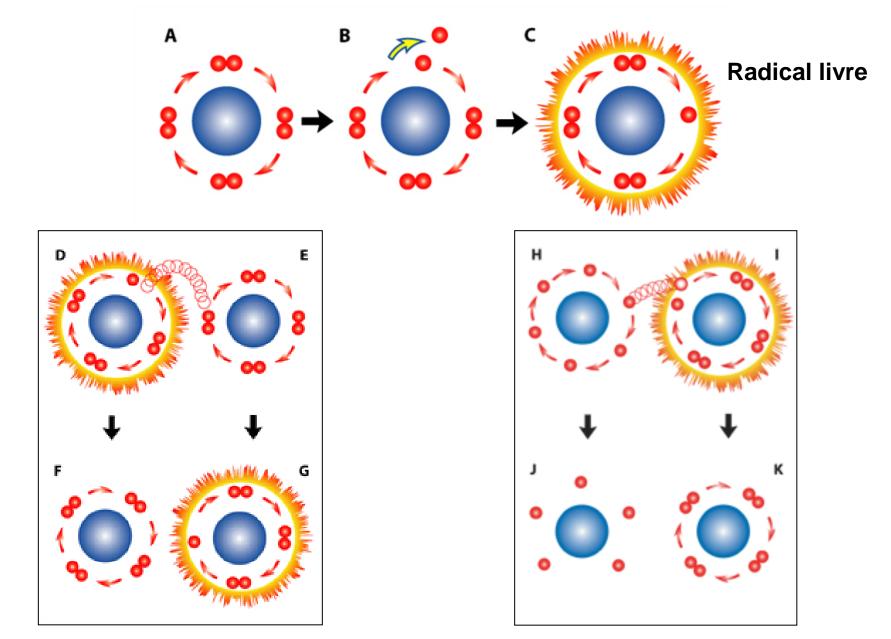

Figure 1: Unsaponifiable components of olive oil.

Kiritsakis (2006)



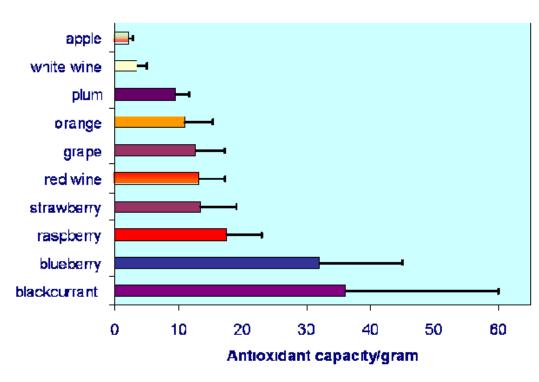

(-)-Epicatechin

(-)-Epicatechin gallate


(-)-Epigallocatechin

(-)-Epigallocatechin gallate

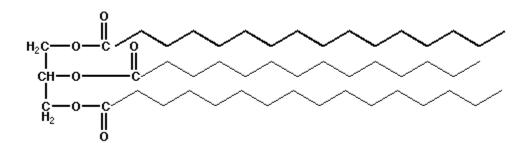
α-Tocopherol (Vitamin E)


http://www.cerefolin.com/OxyStress.php

Radicais livres lesam as moléculas estáveis

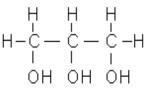
Antioxidantes neutralizam Radicais livres

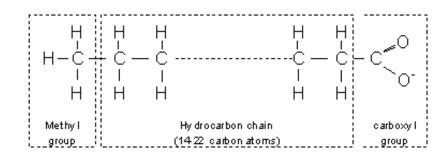
Antioxidant capacity


http://www.fruitnutrition.co.uk/berries_and_nutrition.asp

ORAC* Values of Top Antioxidant	and the second se				
Unprocessed Cocoa Powder 26,0					
Açai Berry	18,500*				
Dark Chocolate	13,120				
Prunes	5,770				
Raisins	2,830				
Blueberries	2,400				
Blackberries	2,036				
Strawberries	1,540				
Spinach, Raw	1,260				
Broccoli Florets	890				
Red Grapes	739				
Cherries	670				
Source: Data from U.S. Departme Agriculture and the Journal of the Chemical Society. * Source: Brunswick Laboratories	American				

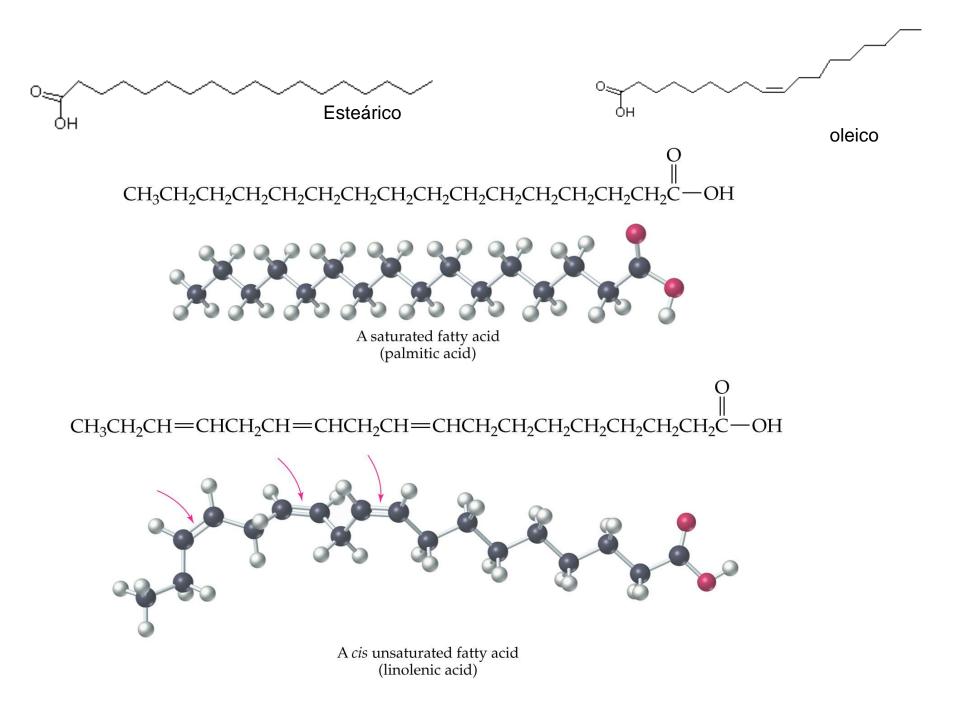
http://www.whyxocai.com/oracscale-inset.jpg


ACILGLICERÓIS (MONO-, DI- OU TRI-)


(= GLICÉRIDOS)

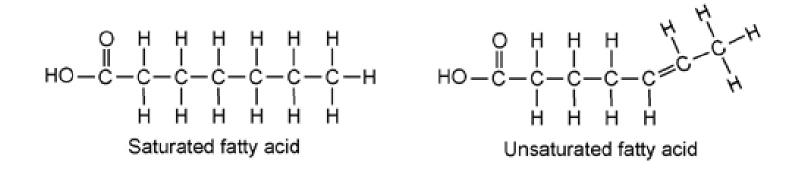
<u>Glycerol</u> is a small, 3-carbon molecule with three hydroxyl groups.

<u>Fatty acids</u> are long molecules with a polar, hydrophilic end and a non-polar, hydrophobic "tail". The hydrocarbon chain can be from 14 to 22 CH2 units long. The hydrocarbon chain is sometimes called an R group, so the formula of a fatty acid can be written as R-COOH.

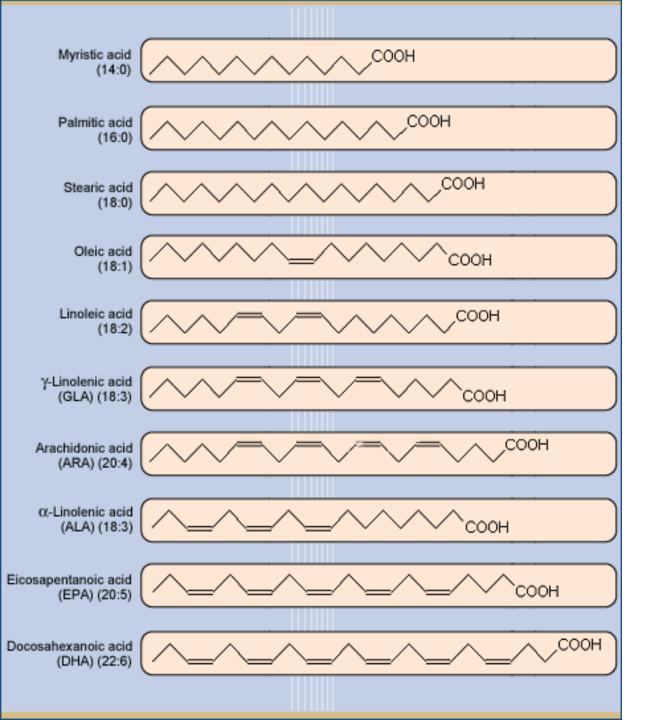

N. COMUM	N. SISTEMÁTICO	C:D.L.	PF
SATURADOS			
	: H3 C(CH2)n COOH		
butírico	butanóico	4:0	-7,9
capróico	hexanóico	6:0	-3,4
caprílico	octanóico ,	8:0	16,7
cáprico	decanóico	10:0	31,6
láurico	dodecanóico	12:0	44,2
mirístico	tetradecanóico	14:0	54,4
palmítico	hexadecanóico	16:0	62,9
Esteárico	octadecanóico	18:0	69,6
araquídico	eicosanoico	20:0	75,4
beénico	docosanóico	22:0	80,0
INSATURADOS	N.		
INOATORADOO			
caproleico	9-decenóico	10:1	-
lauroleico	9-dodecenóico	12:1	-
miristoleico	9-tetradecenóico	14:1	18,5
palmitoleico	9-hexadecenóico	16:1	-
oleico	9-octadecenóico	18:1	16,3
elaídico	9-octadecenóico	18:1	43,7
vacénico	11-octadecenóico	18:1	44,0
linoleico	9,12-		
	octadecadienóico	18:2	-6,5
linolénico	9,12,15-		
	octadecatrienóico	18:3	-12,8
gradoleico	9-eicosenóico	20:1 "	_
araquidónico	5,8,11,14-		
	eicosatetraenóico	20:4	-49,5
-	5,8,11,14,17-		
	eicosapentaenóico	20:5	-
erúcico	13-docosenóico	22:1	33,4
-	4,7,10,13,16,19-		
	docosahexaenóico	22:6	

NOTA: Todas as duplas ligações estão na configuração cis, excepto para o ácido elaídico e vacénico que estão na trans.

Saturated fats - These are considered the most detrimental to your health. They usually are solid at room temperature and are derived from animal products. When looking at their molecular structure, saturated fats contain the maximum number of hydrogen atoms (hence "saturated" with hydrogen atoms).


•Monounsaturated fats - This type of lipid lowers "bad cholesterol", LDL, and leaves the "good cholesterol" HDL levels the same. These are usually liquid at room temperature. When looking at their molecular structure, there are two hydrogen atoms missing with a double bond between two carbon atoms replacing them. Monounsaturated fats include canola oil and olive oil.

•Polyunsaturated fats - This type of fat tends to lower both LDL and HDL levels (remember--we want to keep high levels of HDL). These are liquid at room temperature and typically have more than two hydrogen atoms missing. Polyunsaturated fats include safflower oil, sunflower oil and corn oil.


If there are no C=C double bonds in the hydrocarbon chain, then it is a <u>saturated fatty acid</u> (i.e. saturated with hydrogen). These fatty acids form straight chains, and have a high melting point.

•If there are C=C double bonds in the hydrocarbon chain, then it is an <u>unsaturated fatty acid</u> (i.e. unsaturated with hydrogen). These fatty acids form bent chains, and have a low melting point. Fatty acids with more than one double bond are called poly-unsaturated fatty acids (PUFAs).

Triglycerides containing saturated fatty acids have a high melting point and tend to be found in warmblooded animals. At room temperature they are solids (fats), e.g. butter, lard.

Triglycerides containing unsaturated fatty acids have a low melting point and tend to be found in coldblooded animals and plants. At room temperature they are liquids (oils), e.g. fish oil, vegetable oils.

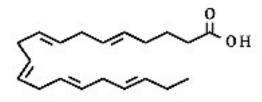
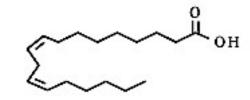
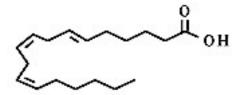
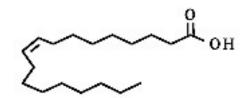

http://www.biovita.fi

Table 1. Iodin Numbers of CommonFats*					
Fat or Oil	lodin number				
Linseed oil	173 - 201				
Tung Oil	170.6				
Menhaden oil	139 - 173				
Whale oil	121 - 146.6				
Soy bean oil	137 - 143				
Sunflower oil	119 - 135				
Corn oil	111 - 130				
Cottonseed oil	108 - 110				
Sesame oil	103 - 108				
Rapeseed oil	94 - 102				
Peanut oil (arachis)	83 - 100				
Olive oil	79 - 88				
Horse oil	71 - 86				
Lard	46 - 70				
Palm oil	51.5 - 57				
Milk fat	26 - 50				
Beef tallow	38 - 46				
Mutton tallow	35 - 46				
Cacao butter	32 - 41				
Palm kernel oil	13 - 17				
Coconut oil	8 - 10				


http://journeytoforever.org/biofuel_library/fatsoils/fatsoils2.html

J. Lewkowitsch, *Chemical Technology and Analysis of Oils, Fats, and Waxes*, pp. 419-24.


•Essential fatty acids - These include omega-6 and omega-3 fatty acids, which have been linked to lowering triglyceride levels. Common sources of essential fatty acids include vegetable oils, fish, grains, seeds, and vegetables.


Eicosapentaenoic acid (EPA) (Omega-3)

Linoleic acid (Omega-6)

Gamma-linolenic acid (Omega-6)

Olcic acid (Omega-9)

Comparison of Dietary Fats

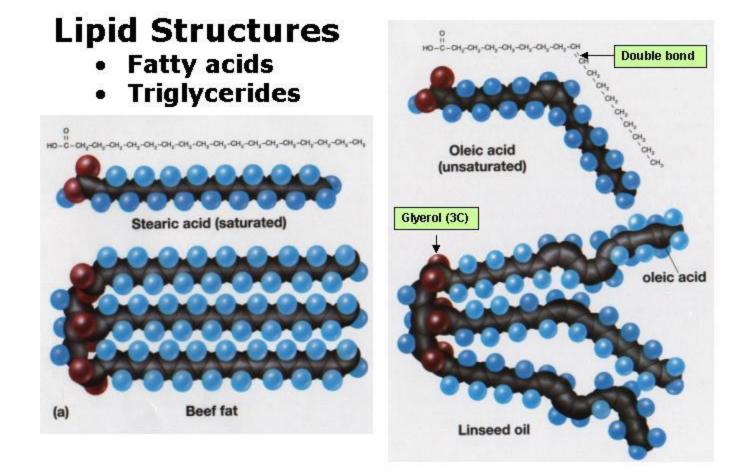
DIETARY FAT				Fatty acid	l content r	omalize	d to 100 p	er cent
Canola oil	7%	21%	11%					61%
Safflower oil	10%			76%		Tra	ace-	14%
Sunflower oil	12%			71%		19	6->	16%
Corn oil	13%		57	7%	1%-			29%
Olive oil	15%	9% +	1%					75%
Soybean oil	15%		5	4%		8%		23%
Peanut oil	19%		33%	 Trac 	е			48%
Cottonseed oil	27%			54%			Trace	19%
Lard*	43%			9% <mark>+</mark> 1%				47%
Beef tallow*	48%			2% 🔸 🕂 1%				49%
Palm oil	51%			10%	Trace)		39%
Butterfat*	68%				3% →	+ 1%		28%
Coconut oil	91%						2%	• 7%

*Cholesterol Content (mg/Tbsp): Lard 12; Beel tailow 14; Butterlat 33. No cholesterol in any vegetable-based oil. Source: POS Filot Plant Corporation, Saskatoon, Saskatchewan, Canada June 1994

SATURATED FAT

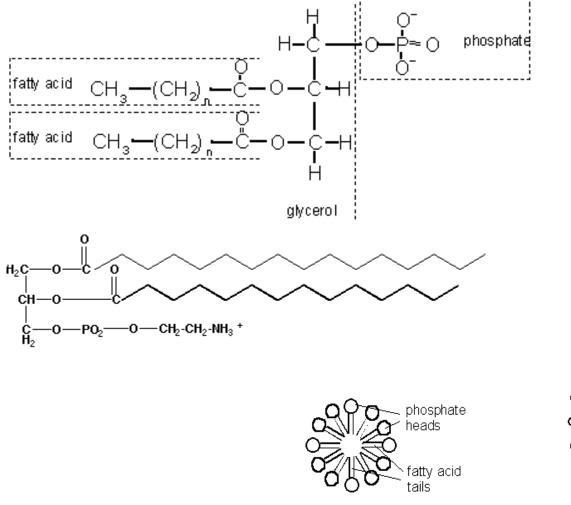
POLYUNSATURATED FAT

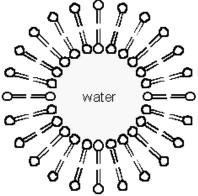
MONOUNSATURATED FAT

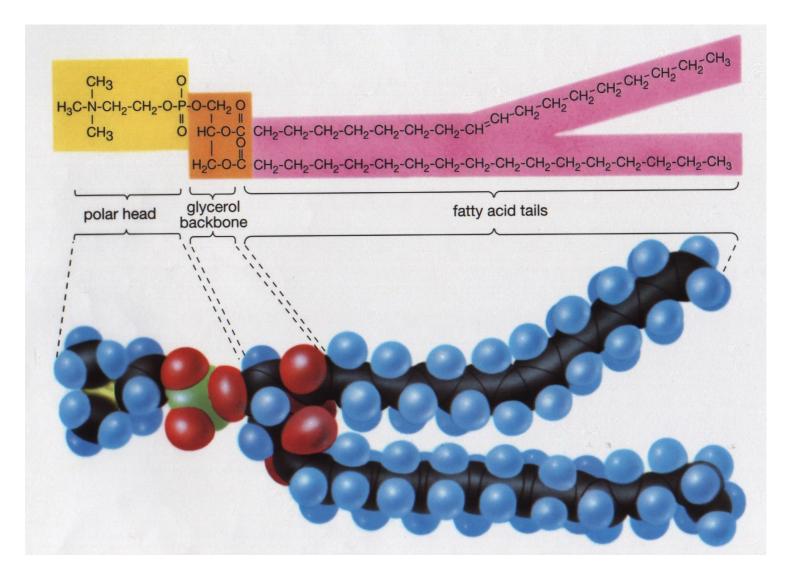

Alpha-Linolenic Acid (An Omega-3 Fatty Acid)

http://www.oliveoil.co.za/health2.html

1						BLINENTAR	5
GORDUNA	S PFT SI	LADA 🦲	Poli	NSATURAD		HONOLASATU	RAPA
ç	olesten y (Tosp	oc.		1			
OLEO CANDANO	0	99/6/	1111		11/11/	18%	13
OLEO GILASSOL	0	11%	all	111/111	<u>unur</u>	69 %	2.0
éleo Milto	0	18%	1111	11111111	MANN.	6296	25
AZEITE	0	14%	97.				77.
ÓLEO SOJA	0	15%	1/4/1		11111	61%	29
ALLEO ARTENDON	٥	18%	1111	(Internet)	34%		48
O SEM-ALGORAD	٥	2796	11/17	11/1/11	11111	54%	19
BANHA	12	414	1111/10	NULLEN N	12%		47
ÓLEO PALTIA	0	5196	11/11		11/10%		39
SEBO	14	52%	1111	(h)(f)	- 4	7.	44
MANTEIGA	33	6696	1111	11/1/1	11/1/	4%	30%
cleo coco	0	9298	111	11111	1111	1111111	7- 61

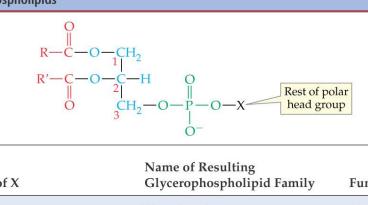

(uitério: origen e composiça)


-origen regetal : grupo do âcide lindernico grupo de âc. drivo- linderno grupo de âc. lânsie grupo de âc. enícito "grupo de âc. enícito "grupo de âc. enícito "grupo de âc. enícito "grupo de lite yodure adipose animel cleo de origen manima

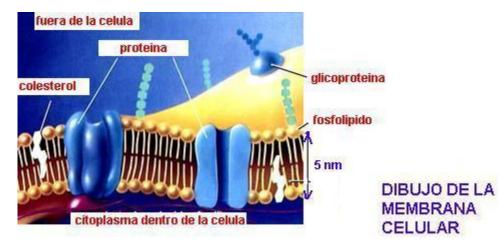


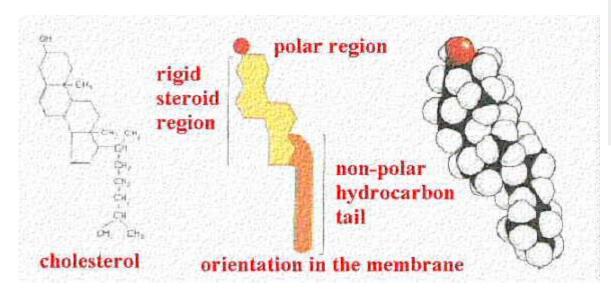
http://www.ualr.edu/botany/fattyacids.jpg

FOSFOLÍPIDOS

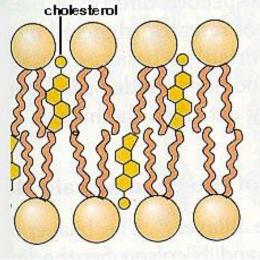


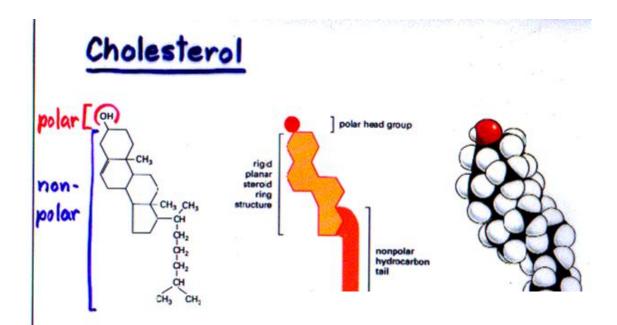
http://www.ualr.edu/botany/fattyacids.jpg

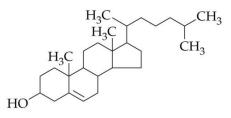

TABLE 24.3 Some Glycerophospholipids


Precursor of X (HO–X)	Formula of X	Name of Resulting Glycerophospholipid Family	Function
Water	—н	Phosphatidate	Basic structure of glycerophospholipids
Choline	-CH ₂ CH ₂ ⁺ N(CH ₃) ₃	Phosphatidylcholine	Basic structure of lecithins; most abundant membrane phospholipids
Ethanolamine	$-CH_2CH_2NH_3$	Phosphatidylethanolamine	Membrane lipids
Serine	-CH ₂ -CH COO ⁻	Phosphatidylserine	Present in most tissues; abundant in brain
<i>myo-</i> Inositol	Bond site H OH H OH HO OH HO OH	Phosphatidylinositol	Relays chemical signals across cell membranes
	Н Н		

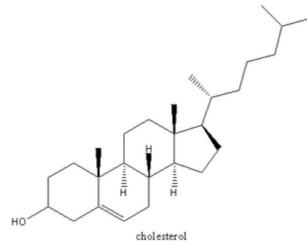
http://wps.prenhall.com


X-Structure	Name	Туре
H2O	Water	Phosphatidic Acid
+ H ₃ N-CH ₂ -CH ₂ -	Ethanolamine	Phosphatidylethanolamin e
+ CH ₃ H ₃ CNCC H ₂ H ₂ CH ₃	Choline	Phosphatidylcholine
HOOC H_{C} C Serine H_2 H_2	Serine	Phosphatidylserine
	Inositol	Phosphatidylinositol


http://ar.geocities.com/moni2201/membrana_celular.htm



http://cellbio.utmb.edu



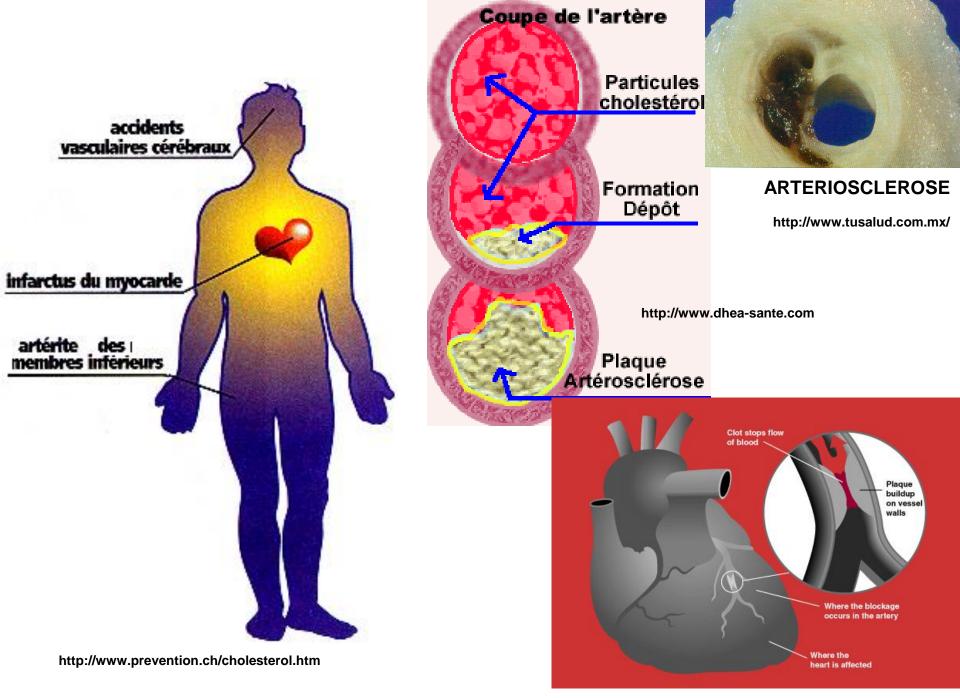
The cholesterol molecule is a steroid lipid, found in the cell membranes of all body tissues, and transported in the blood plasma, of all animals. Most cholesterol is produced internally, not dietary in origin. It is present in higher concentrations in tissues which either produce more or have more densely packed membranes; for example the liver, spinal cord, brain and atheroma. Cholesterol plays a central role in many biochemical processes, but is best known for the association of cardiovascular disease with various lipoprotein cholesterol transport patterns in the blood.

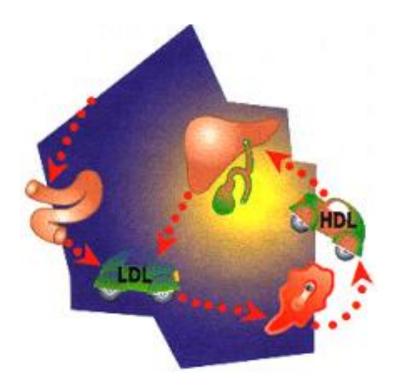
The name originates from the Greek chole- (bile) and major constituent of most gallstones, stereos (solid), as researchers first identified cholestero^{gallstones also occur less frequently.}

in solid form in gallstones.

http://www.worldofmolecules.com/disease/cholesterol.htm

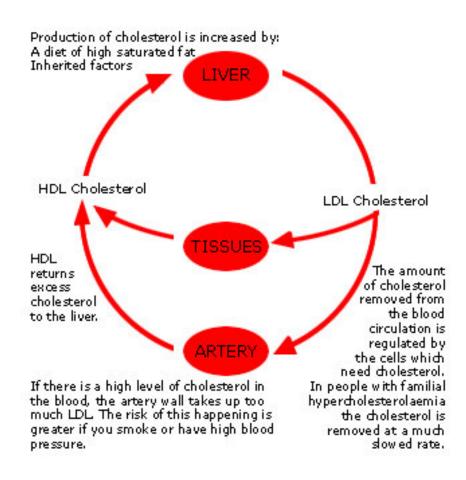
Function


The cholesterol molecule is an important component of the membranes of cells, providing stability. It is the major precursor for the synthesis of vitamin D, of the various steroid hormones, including cortisol, cortisone, and aldosterone in the adrenal glands, and of the sex hormones progesterone, estrogen, and testosterone. Further recent research show that cholesterol molecules have an important role for the brain synapses as well as in the immune system.


Excretion

Cholesterol is excreted from the liver in bile and reabsorbed from the intestines. Under certain circumstances, when more concentrated, as in the the gallbladder, it crystallises and is the major constituent of most gallstones, although lecitin and bilirubin gallstones also occur less frequently.

Role in disease


In conditions featuring elevated LDL, cholesterol molecules often promote atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. However, as today's testing methods determine LDL ("bad") and HDL ("good") cholesterol separetely, this simplistic view has become somewhat outdated. The desirable LDL level is considered to be 75-130 mg/dl (1.9-3.3 mmol/L), and a ratio of total cholesterol to HDL arguably the most useful measure—of less than 5:1 is thought to be healthy. Increasing clinical evidence has strongly supported the greater predictive value of still more sophistical testing which directly measures both LDL and HDL particle concentrations and size as opposed to the more usual estimates or measures of the total cholesterol within LDL particles or the total HDL concentration. The real key is cholesterol transport which is determined by both the proteins which form the lipoprotein particles and the proteins on cell curfaces with which they interact.

http://www.prevention.ch/cholesterol.htm

How Cholesterol is carried around the body

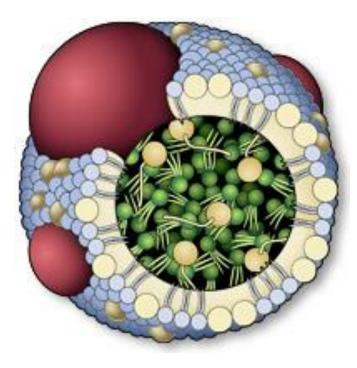
Lipoproteins

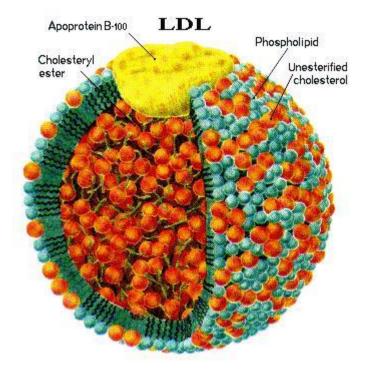
There are two main forms of lipoproteins.

• Low density lipoproteins (LDL), which carry cholesterol from the liver to the cells.

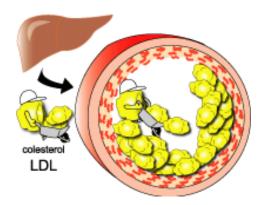
• High density lipoproteins (HDL), which return the extra cholesterol that isn't needed to the liver.

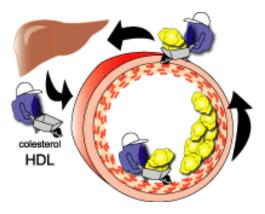
Blood lipids

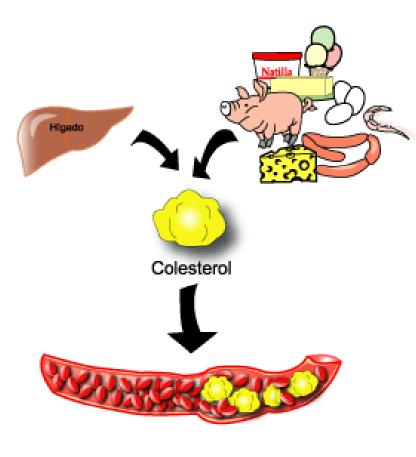

You may also have heard the term 'blood lipids'. This is a name for all the fatty substances in the blood, including HDL cholesterol, LDL cholesterol and triglycerides.


If you have high levels of both triglycerides and blood cholesterol, you run a greater risk of coronary heart disease. The risk is particularly high if you also have a low level of HDL cholesterol and a high level of LDL cholesterol. (See illustration). A high level of triglycerides also increases the risk of coronary heart disease and stroke.

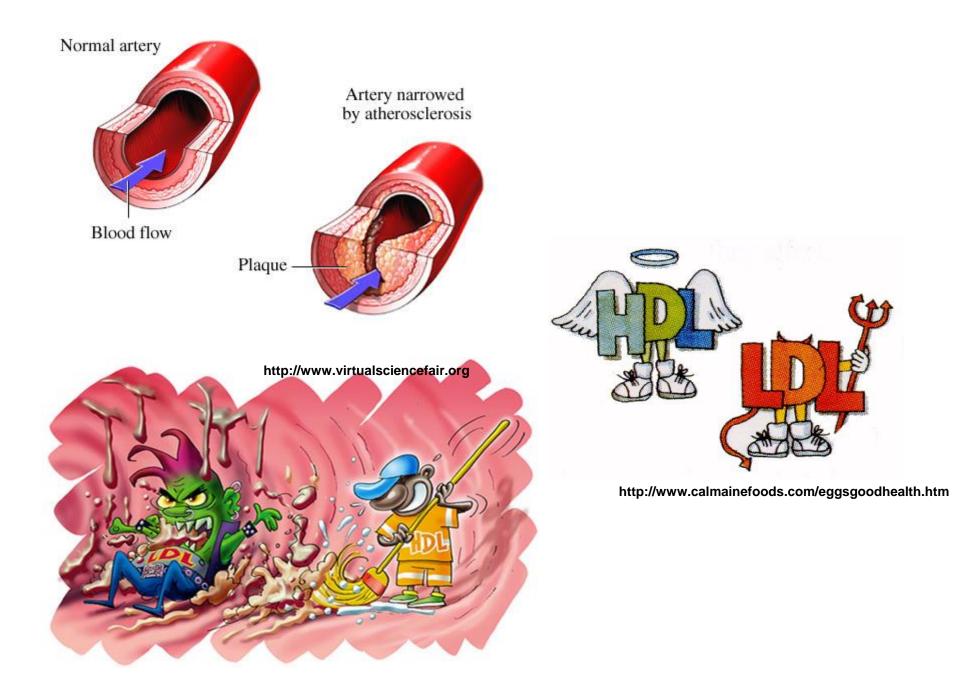
Lipoprotein classification

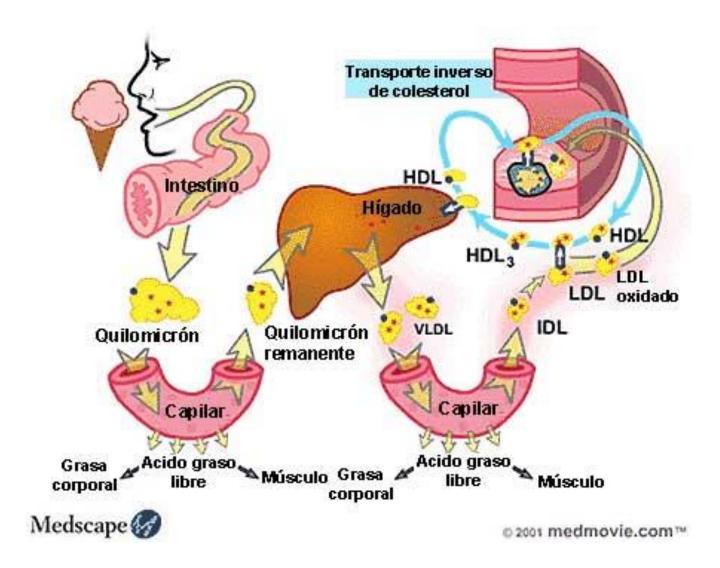

Lipoprotein	full name	density
VLDL	very low density lipoprotein	<1.006 g/ml
LDL	low density lipoprotein	1.006-1.062 g/ml
HDL	high density lipoprotein	1.063-1.20 g/ml
VHDL	very high density lipoprotein	>1.20 g/ml


HDL



http://wichita.kumc.edu/edtech/medill.html





http://www.medicosdeoriente.com.ve

http://www.nutricion.co.cr/paginas/rincon_nutric/colesterol/colesterol.htm

Colesterol	∞ontenido	⊧en alimen	tos de	uso corriente

	Alimentos (100 gram os)	Miligramos	~~ ~
8883333			
	Sesos	2.300	**************************************
States.	ر Riñones	400	Kana a l
d'am	🖄 Hígado	360	
	Grasa de carne برج	300	
- E-1	🖓 Ternera	100-70	
¶4	Pollo 🛛	75	
	Cordero	75	
	Embutidos	90	and the
	Huevos	1.500	
	Leche entera	10	
	Leche descremada	3	
	Mantequilla	250	
	Quesos grasos	150-100	
	Pescado	40	
	Hue vas de pescado	700	C San Star Star
	Marisco	200-100	
			And the second
	Vegetales	0	
v.elmundo.e	S		the second se

http://www.elmundo.es

NORMA PORTUGUESA

NP 964

1988

Gorduras e óleos comestíveis Obtenção

Graisses et huiles comestibles Obtention

Edible fats and oils Obtention

CDU 665.2/665.3

 \mathcal{O}

Descritores

Gorduras: óleos comestíveis; extracção; definições; especificações do processo

Correspondência

Homologação Diário da República, III Série, N.º 110, de 1988-05-12

•		
i		© IPQ reprodução proibida
Gr 4	A presente Norma resultou da revisão da NP 964(1980) Elaborado por CT39 (IQA)	Edição Outubro de 1988

3. Definições

3.1. Gordura - Substância constituída principalmente por ésteres de ácidos gordos e glicerol, ou seja, os glicéridos (triglicéridos, diglicéridos e monoglicéridos).

3.2. Óleo - Gordura líquida à temperatura de 20°C.

3.3. Gordura e óleo naturais - Gordura e óleo provenientes de reserva nutritiva de seres vivos constituída por uma mistura complexa de triglicéridos, que tem dissolvidos, geralmente em pequenas quantidades, outros lípidos, como diglicéridos, monoglicéridos e fosfatídios, os ácidos gordos libertados pela hidrólise e também diversas substâncias insaponificáveis.

3.4. Gordura e óleos comestíveis - Gordura e óleo naturais utilizáveis como género alimentício.

3.5. Extracção - Processo para retirar a gordura ou óleo da matéria-prima onde se contêm.

3.6. Depuração - Processo para separar impurezas insolúveis ou em suspensão na gordura ou no óleo.

3.7. Fraccionamento - Processo para separar glicéridos de diversas temperaturas de solidificação, da gordura ou do óleo, bem como ceras e certas substâncias insaponificáveis.

3.8. Refinação - Processo para purificar ou beneficiar uma gordura ou um óleo separando impurezas lipossolúveis e componentes indesejáveis, sem, contudo, provocar considerável modificação molecular e de estrutura glicerídica.

3.9. Hidrogenação - Saturação pelo hidrogénio de duplas ligações livres dos radicais de ácidos gordos insaturados nas moléculas dos alicéridos.

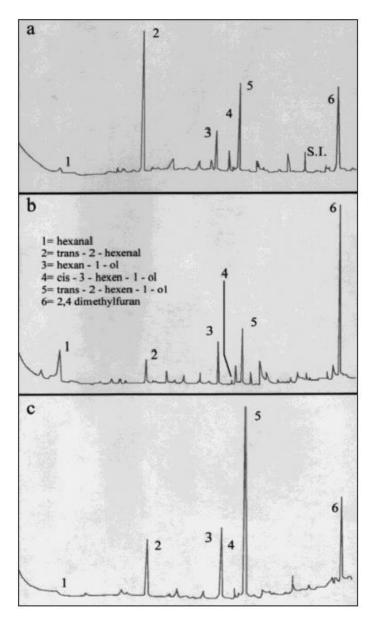
3.10. Interesterificação - Permuta de radicais de ácidos gordos nas moléculas dos glicéridos, processada numa só gordura ou num só óleo.

3.11. Transesterificação - Permuta de radicais de ácidos gordos nas moléculas dos glicéridos processada numa mistura de gorduras ou óleos.

nstituto Português da Lualidade

5. Processos de obtenção

Os processos admitidos na obtenção das gorduras e dos óleos comestíveis são os seguintes: extracção, depuração, fraccionamento, refinação e também, em certos casos, a modificação molecular e de estrutura glicerídica mediante hidrogenação, interesterificação ou transesterificação. Todas as operações devem decorrer a temperaturas que não alterem a gordura ou o óleo, utilizando-se, quando necessário, pressão reduzida.

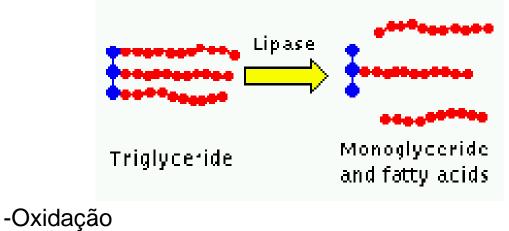

5.1. A extracção efectua-se apenas por processos físicos, mediante fusão, acção mecânica, tensão superficial ou dissolução.

5.2. A depuração efectua-se, uma ou mais vezes, durante a obtenção, mediante operações de decantação, lavagem, filtração, centrifugação e desmucilaginização.

5.3. O fraccionamento efectua-se por operações de arrefecimento ou aquecimento a determinadas temperaturas e por cristalização fraccionada em dissolvente apropriado. Pode dar, ou não, lugar a transformação da gordura ou óleo.

5.4. A refinação efectua-se mediante operações de neutralização dos ácidos gordos livres com soluções alcalinas ou de separação desses ácidos por destilação em ambiente rarefeito, bem como de descoloração com adsorventes inócuos e de desodorização pela passagem do vapor de água em ambiente rarefeito.

5.5. A modificação molecular e de estrutura glicerídica, com subsequente eliminação do catalisador utilizado, tem lugar, apenas, na obtenção de gorduras transformadas mediante operações do processo de hidrogenação, bem como de interesterificação ou de transesterificação, mas nunca por esterificação em que haja adição de glicerol ou de outros álcoois.



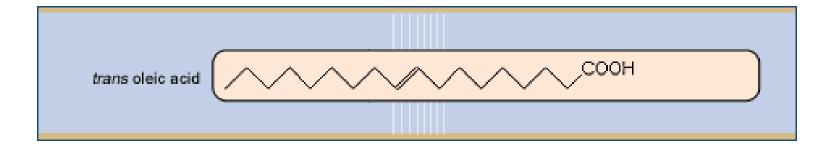
Kiritsakis (2006)

Figure 2: Gas chromatography mass spectroscopy analysis of the flavor components of three samples of olive oil (a: fruity flavor, b and c: with defects) (Tateo et al., 1993).

ALTERAÇÕES NOS ÓLEOS E GORDURAS

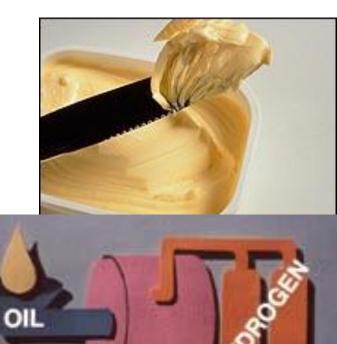
-Hidrólise

-Reversão do flavour

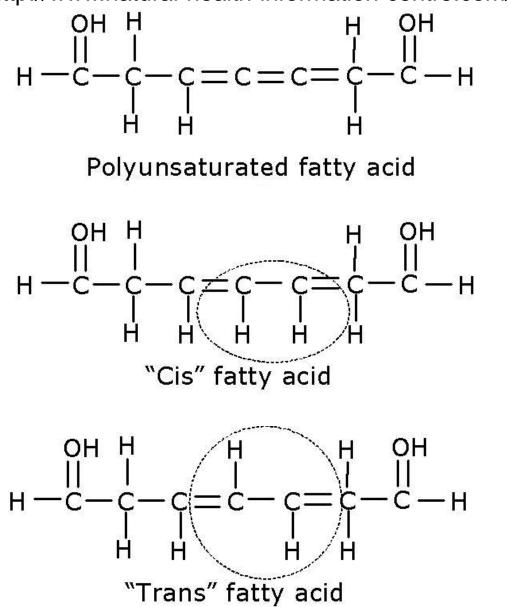


PROCESSAMENTO DOS ÓLEOS

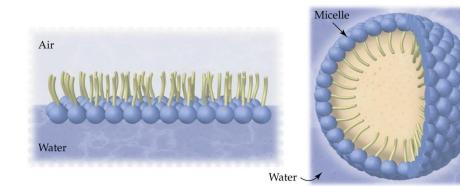
- Refinação Branqueamento desodorização
- Modificação Interesterificação Fraccionamento


•Hydrogenated fats - During hydrogenation, hydrogen atoms are added back to polyunsaturated or monounsaturated fats to protect against rancidity from bacteria or air exposure. As a consequence, this process causes hydrogenated fats to become saturated fats. If a food label states the words **partially hydrogenated oils** among its first ingredients, that means that it contains a lot of trans-fatty acids and saturated fats.

•**Trans-fatty acids** - In nature, most unsaturated fats are cis-fatty acids. During hydrogenation, the molecular structure changes from cis- to trans-fatty acids. These fats increase LDL levels and decrease HDL levels, which may increase your risk of heart disease.

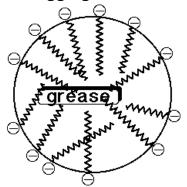


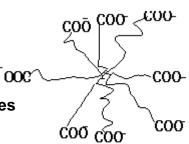
MARGARINE


http://www.natural-health-information-centre.com/trans-fats.html

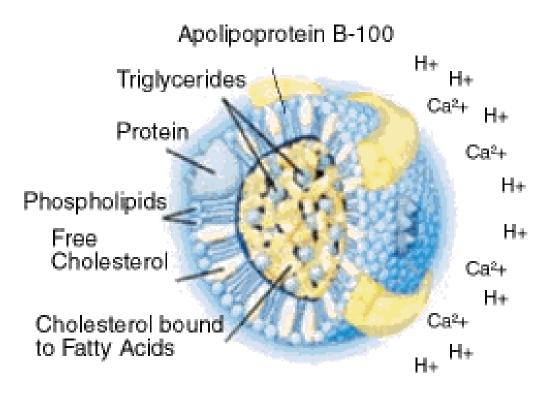
Referências bibliográficas

Composition of olive oil and its nutritional and health effect

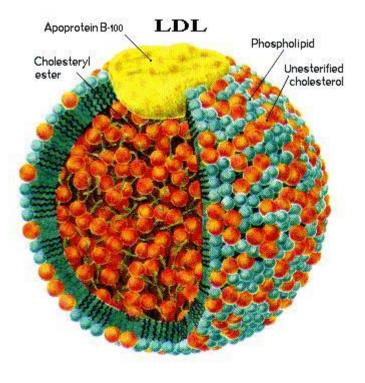

Apostolos K. <u>Kiritsakis</u> In: <u>http://www.regional.org.au</u> (22/10/2006)

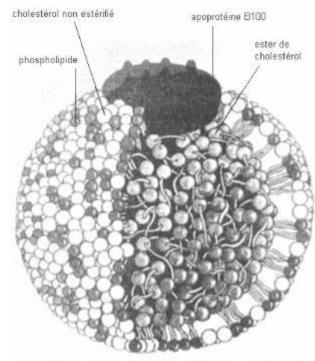


$$\underbrace{\hspace{1.5cm}}^{O^{\ominus}} N_{a}^{\oplus}$$

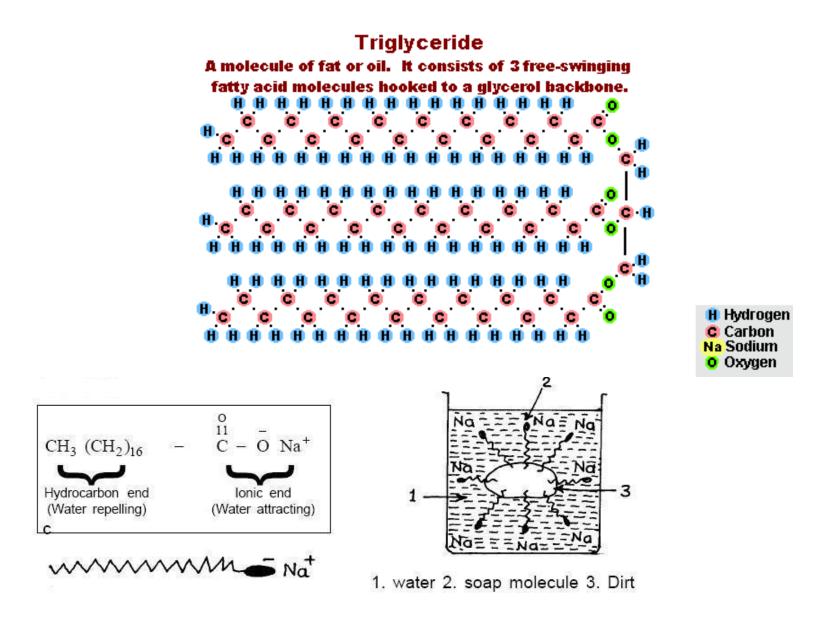

•basic hydrolysis of fats (saponification) generates soaps (the sodium salts of fatty acids)

•the ionic head group is water-soluble, the nonpolar tail insoluble ⁰⁰⁰ •soaps tend to aggregate in micelles, where nonpolar dirt dissolves


A Micelle (Soap)



http://www.souzaoenterprises.com/LDLCholesterolMolecule.gif


http://www.coe.drexel.edu/ret/images/biotech/LDL.png

Modèle d'une LDL, d'après M. Brown et J. Goldstein

http://fderad.club.fr/atherome.htm

http://en.wikipedia.org/wiki/Make_your_own_soap